Eddy modulation of air-sea heat fluxes

Guillaume Maze
John Marshall
Emily Shuckburgh
Helen Jones
David Ferreira

ECCO2 Meeting, Sept.23-24/2008

Sea surface net heat flux: May 5th 2003

1/8, II2.nb.0 I

Rapid atmospheric synoptic scale

1/8, II2.nb.01

Oceanic mesoscale Rapid atmospheric synoptic scale

I/8, II2.nb.0 I

MONTHLY Mean

Atmospheric synoptic scale averaged out

Huge spatial variability set by oceanic mesoscale

MONTHLY Mean

Atmospheric synoptic scale averaged out

Eddies advect anomalous warm/cold water

Eddies advect anomalous warm/cold water

which are strongly damped

Damping time scale

$$\frac{Q_{nct}}{\rho C_{po}H} = -\lambda (T-T^*)$$

$$\frac{[Q'_{net}T']}{\rho C_{po}H} = -\lambda [T'^2]$$

$$\frac{1}{\lambda} = -\rho C_{po}H \frac{[T'^2]}{[Q'_{net}T']}$$

$$\frac{1}{\lambda} = -\rho C_{po}H \frac{[T'^2]}{[Q'_{net$$

Conclusion

- The presence of mesoscale eddy field systematically modulates air-sea heat fluxes
- Air-sea heat fluxes tend to damp SST anomalies on a timescale of 2->6 months
- It induces a lateral eddy heat flux through the mixed layer

The lateral eddy flux may be estimated as an Eddy Diffusivity coefficient:

$$K_{sea}^{air} = \frac{-1}{\rho C_{po}H} \frac{[Q'_{net}T']}{\nabla[T] \cdot \nabla[T]}$$

$$-\frac{[Q'_{net}T']}{\rho C_{po}H} = \lambda[T'^2]$$

$$K_{sea}^{air}([T'^2]) = \lambda \frac{[T'^2]}{\nabla[T] \cdot \nabla[T]}$$

which adds up to the horizontal background eddy diffusivity in the mixed layer

